

Dayalbagh Educational Institute (Deemed University), Agra,Dayalbagh, Agra - 282005, Uttar Pradesh

INVITATION LETTER

Package Code: TEQIP-III/2019/UP/deia/301 Package Name: dei/foe/elect/PV Wind

Current Date: 17-Jul-2019 Method: Shopping Goods

Sub: INVITATION LETTER FOR dei/foe/elect/PV Wind

Dear Sir,

1. You are invited to submit your most competitive quotation for the following goods with item wise detailed specifications given at Annexure I,

Sr. No	Item Name	Quantity	Place of Delivery	Installation Requirement (if any)
1	Solar PV & Wind HybridSystem with DC Micro Grid	1	Faculty of Engineering , DEI, Dayalbagh Agra- 282005	Installation would be done at Faculty of Engineering, D.E.I., Dayalbagh, Agra- 282005

2. Government of India has received a credit from the International Development Association (IDA) towards the cost of the Technical Education Quality Improvement Programme [TEQIP]-Phase III Project and intends to apply part of the proceeds of this credit to eligible payments under the contract for which this invitation for quotations is issued.

3. Quotation

- 3.1 The contract shall be for the full quantity as described above.
- 3.2 Corrections, if any, shall be made by crossing out, initialling, dating and re writing.
- 3.3 All duties and other levies payable by the supplier under the contract shall be included in the unit Price.
- 3.4 Applicable taxes shall be quoted separately for all items.
- 3.5 The prices quoted by the bidder shall be fixed for the duration of the contract and shall not be subject to adjustment on any account.
- 3.6 The Prices should be quoted in Indian Rupees only.
- **4**. Each bidder shall submit only one quotation.

- 5. Quotation shall remain valid for a period not less than **45**days after the last date of quotation submission.
- 6. Evaluation of Quotations: The Purchaser will evaluate and compare the quotations determined to be Substantially responsive i.e. which
 - 6.1 are properly signed; and
 - 6.2 Confirm to the terms and conditions, and specifications.
- 7. The Quotations would be evaluated for all items together.
- 8. Award of contract The Purchaser will award the contract to the bidder whose quotation has been determined to be substantially responsive and who has offered the lowest evaluated quotation price.
 - 8.1 Notwithstanding the above, the Purchaser reserves the right to accept or reject any quotations and to cancel the bidding process and reject all quotations at any time prior to the award of Contract.
 - 8.2 The bidder whose bid is accepted will be notified of the award of contract by the Purchaser prior to expiration of the quotation validity period. The terms of the accepted offer shall be Incorporated in the purchase order.
- 9. Payment shall be made in Indian Rupees as follows:

Satisfactory Delivery & Installation - 90% of total cost Satisfactory Acceptance - 10% of total cost

- 10.Liquidated Damages will be applied as per the below:
Liquidated Damages Per Day Min % : N/A
Liquidated Damages Max % : N/A
- 11. All supplied items are under warranty of **N/A** months from the date of successful acceptance of items and AMC/Others is .
- 12. You are requested to provide your offer latest by 16:30 hours on 31-Jul-2019.
- **13.** Detailed specifications of the items are at Annexure I.
- 14.Training Clause (if any) Training would be done at Faculty of Engineering DEI,Dayalbagh
- 15. Testing/Installation Clause (if any) Testing would be done at Faculty of Engineering,D.E.I.
- 16. Performance Security shall be applicable: 0%

- 17. Information brochures/ Product catalogue, if any must be accompanied with the quotation clearly indicating the model quoted for.
- Sealed quotation to be submitted/ delivered at the address mentioned below, Dayalbagh
 Educational Institute (Deemed University), Agra,Dayalbagh, Agra 282005, Uttar
 Pradesh
 - **19.** We look forward to receiving your quotation and thank you for your interest in this project.

(Authorized Signatory) Name & Designation

<u>Annexure I</u>

1. Wind Turbine Emulator

S. No.	Component	Specification	
1.	DC Motor	-	
	Output Power	3.5kW (5HP)	
	Nominal Field Voltage	220V DC	
	Nominal Armature	220V DC	
	 Speed at rated voltages 	1500	
2	DC Drive		
2.		230 V	
	 Input Voltage Input Current 	13 A	
		200 V	
	Output Voltage	15 A	
	Output Current Switching Frequency	20 kHz	
	Switching Frequency		
3.	Buck Converter after generator		
	Input voltage	450 V	
	Output Voltage	150 V	
	Output Current	10 A	
	Switching Frequency	20 kHz	
4	Bidirectional Converter		
	Input voltage	105 V (Battery Side)	
	Output Voltage	150 V (Inverter Side)	
	Output Voltage	10 A	
	Switching Frequency	20 kHz	
5	Gear Box		
5.	Gear Batio	2 · 1	
6	Induction Generator		
0.		Squirrel Cage Type (Self Excited)	
	Output Power	1.2kW	
	 Line to Line Voltage 	415V AC	
	No of Poles	8	
7	Tacho-Generator		
1.		241/ DC	
		10V DC for 1500RPM	
8	Speed Encoding AC Excitation Canacitors		
0.	AC Excitation Capacitors	delta	
		50 UF AC	
0			
9.		FRGA	
	Technology	Available	
	ADC Inputs	Available	
10	PVVIVI POrts	Available	
10.	Sensing Board		
	4DC Voltage Sensors		
	3DC Current Sensors		
11.	Pull-UP Card for Inverter Gate	8 PWM Signals	
40	Firing Bridge Destifier		
12.	Bridge Rectifier	101 1001/	
	Rating	10A, 400V	
	Capacitor	33UUHF, 45UV	
13.	Three Phase Inverter		
	 3 Leg inverter 		

	Maximum DC Input Voltage	150V DC
	 Output Voltage 	112 V AC
	 Output Current 	25 A
	 Switching Frequency 	10 <i>k</i> Hz
14.	Step UP Power Transformer	
	Connection	Delta to Star
	Rating	5000VA
15.	Measurement	
	 DC Link Voltage Voltmeter 	0-1000 V
	Armature Voltage Voltmeter	0-1000 V
	 Field Voltage Voltmeter 	0-1000 V
	 Battery Voltage Voltmeter 	0-200 V
	 Rectified Voltage Voltmeter 	0-1000 V
	 Battery Current Ammeter 	0-10 A
	Tachometer	0-2000 RPIM
16.	Three Phase LC Filter	
	 Inductor 	3mH, 10A
	Capacitor	10µF, 400∨
17.	Protection	
	AC and DC MCBs	
18.	Battery Bank	10.14
	Voltage	12 V
	Capacity	24 An
	Total No. Of Batteries	8
19.	Autotransformer Single Phase	0.050.1/
	Voltage Range	0-250 V
	Wattage	5 KVV
20.	Autotransformer Inree Phase	0.450.)/
		0-450 V
	Voltage Range	8 Amp.
21	Max. Current	
∠۱.	(For Grid)	
	Voltage Range	0-450 V
	Max Current	15 Amp
		10,p.

2. Solar PV Array

S. No.	Component	Specification
22.	PV Panel (To be provided by DEI)	
	• Voc	43.2 V
	• Isc	7.5 A
	Power	250 Wp
	• Vmpp	35.0 V
	• Impp	7.14 A
	• Total No. of PV Panels in PV	8
	Array	
	Total Power	2 kW
	Total No. of Panels in series	4
	Total no of Parallel legs	2
23	Buck Converter	
	Input voltage	140 V
		15 A

Input CurrentOutput VoltageOutput Current	120 V 17 A 20 kHz
 Switching Frequency 	

3. Fuel Cell

Component	Specifications		
Type of fuel cell	PEM		
Number of cells	48		
Rated Power	1000W		
Performance	28.8V @ 35A		
H2 Supply valve voltage	12V		
Purging valve voltage	12V		
Blower voltage	12V		
Reactants	Hydrogen and Air		
External temperature	5 to 30°C		
Max. stack temperature	65°C		
H2 Pressure	0.45-0.55bar		
Hydrogen purity	≧99.995 % dry H2		
Humidification	self-humidified		
Cooling	Air (integrated cooling fan)		
Stack weight (with fan & casing)	4000 grams(±100grams)		
Controller weight	400 grams(±30grams)		
Dimension	23.3cm x 26.8cm x 12.3cm		
Flow rate at max output*	13 L/min		
Start up time	≦30S at ambient temperature		
Efficiency of stack	40% @ 28.8V		
Low voltage shut down	24V		
Over current shut down	42A		
Over temperature shut down	65°C		
External power supply**	13V(±1V),8A		

Boost Converters for Fuel Cell:

1.	1st Stage Boost Converter	
		50 V
	 Input DC Voltage 	120 V
	O/P DC Voltage	9 Amps.
	O/P DC Current	25 kHz
	Switching Frequency	Forced Cooled
		45 Deg.

Type of Cooling	Class 1 100% Cont.
Ambient Temperature	
 Duty Class 	

System Capabilities

System should have following capabilities:-

- 1. Study of the effect of change in wind speed and pitch angle on the operation of DC micro grid system.
- 2. Power flow analysis of in a DCmicro-grid system with multiple sources (wind and solar) and battery as energy storage.
- 3. Study the effect of change in solar insolation with daytime and geographic location on the operation of DC micro grid system.
- 4. Study the buck and boost mode of operation of bidirectional converter connected to the battery storage system, under the following conditions:
 - A. Load is greater than generation from both sources (i.e. Battery discharging)
 - B. Load is less than generation from both sources (i.e. Battery charging)
- 5. Study of system performance with two renewable sources (wind and solar) connected together to form a DC micro grid with battery as the energy storage device.
- 6. Study of the integration of DC micro-grid to the main AC grid using a 3-phase inverter.
- 7. Study the operation of DC micro-grid under various load conditions by applying various DC and AC loads.
- 8. Control and analysis of the power supplied to the AC grid
- 9. Ability to track torque-speed and power-speed characteristics of a wind turbine at different wind speeds and pitch angle.
- 10. Plotting Cp- λ curve to show the turbine characteristics at a particular pitch angle.
- 11. Real time tracking of λ could be utilized to track the optimal λ of a turbine.
- 12. Maximum power point tracking opportunity based on the generated voltage and current feedback.

- 13. Ability to control DC link voltage using bidirectional converter in stand-alone mode.
- 14. Research on micro grid possible as the DC link can accommodate other renewable sources such as PV.
- 15. Comparative analysis of different PV panels using PV emulator.
- 16. Series-parallel behavior of different PV panels could be analyzed for both standalone and grid connected systems.
- 17. Power flow and quality supplied to the grid can be controlled and analyzed.
- 18. Further exploration of control techniques for smart grid implementation possible.
- 19. Continuous sensing of grid side voltage and currents provide opportunity to implement advanced control algorithms to control the behavior as per grid conditions.

FORMAT FOR QUOTATION SUBMISSION

(In letterhead of the supplier with seal)

Date:

То:_____

SI. No.	Description of Qty.	y. Unit	Quoted Unit rate in Rs.	Total Price	Sales tax and other taxes payable		
	Specifications)			excise duty, packing and forwarding, transportation, insurance, other local costs incidental to delivery and warranty/ guaranty commitments)	(A)	In %	In figures (B)
		-	Total C	ost			

(Rupees — amount in words) within the period specified in the Invitation for Quotations. We confirm that the normal commercial warranty/ guarantee of — months shall apply to the offered items and we also confirm to agree with terms

and conditions as mentioned in the Invitation Letter.

We hereby certify that we have taken steps to ensure that no person acting for us or on our behalf will engage in bribery.

Signature of Supplier

Name: _____

Address: _____

Contact No.